客服热线:   |  E-mail:

极速赛车怎么赚几十万

食品饮料杀菌技术

  声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

  食品杀菌技术主要有热杀菌和非热杀菌,其中热杀菌主要有:湿热杀菌、干热杀菌、微波杀菌、电热杀菌和电场杀菌等;非热杀菌主要有:化学与生物杀菌、辐照杀菌、紫外线杀菌、脉冲杀菌、超高静压杀菌、脉冲电场(PEF)杀菌以及振动磁场杀菌等。

  热杀菌是以杀灭微生物为主要目的的热处理形式,而湿热杀菌是其中最主要的方式之一。它是以蒸气、热水为热介质,或直接用蒸汽喷射式加热的杀菌法。

  利用热能转换器(如锅炉)将燃烧的热能转变为热水或蒸汽作为加热介质,再以换热器将热水或蒸汽的热能传给食品,或将蒸汽直接喷入待加热的食品。

  蒸汽 易于用管道输送,加热均匀,温度易控制,凝结潜热大,但温度不能太高

  食品中的微生物是导致食品不耐贮藏的主要原因。细菌、霉菌和酵母都可能引起食品的变质。

  食品中的微生物是导致食品不耐贮藏的主要原因。一般说来,食品原料都带有微生物。在食品的采收、运输、加工和保藏过程中,食品也有可能污染微生物。在一定的条件下,这些微生物会在食品中生长、繁殖,使食品失去原有的或应有的营养价值和感官品质,甚至产生有害和有毒的物质。

  细菌、霉菌和酵母都可能引起食品的变质,其中细菌是引起食品腐败变质的主要微生物。细菌中非芽孢细菌在自然界存在的种类最多,污染食品的可能性也最大,但这些菌的耐热性并不强,巴氏杀菌即可将其杀死。细菌中耐热性强的是芽孢菌。芽孢菌中还分需氧性、厌氧性的和兼性厌氧的。需氧和兼性厌氧的芽孢菌是导致罐头食品发生平盖酸败的原因菌,厌氧芽孢菌中的肉毒梭状芽孢杆菌常作为罐头杀菌的对象菌。酵母菌和霉菌引起的变质多发生在酸性较高的食品中,一些酵母菌和霉菌对渗透压的耐性也较高。

  不同微生物的最适生长温度不同,当温度高于微生物的最适生长温度时,微生物的生长就会受到抑制,而当温度高到足以使微生物体内的蛋白质发生变性时,微生物即会出现死亡现象。

  一般认为,微生物细胞内蛋白质受热凝固而失去新陈代谢的能力是加热导致微生物死亡的原因。因此,细胞内蛋白质受热凝固的难易程度直接关系到微生物的耐热性。蛋白质的热凝固条件受其它一些条件,如:酸、碱、盐和水分等的影响。

  影响因素主要包括:细胞本身的遗传性、组成、形态,培养基的成分,培育时的环境因子,发育时的温度以及代谢产物等。

  成熟细胞要比未成熟的细胞耐热。培养温度愈高,孢子的耐热性愈强,而且在最适温度下培育的细菌孢子具有最强的耐热性。营养丰富的培养基中发育的孢子耐热性强,营养缺乏时则弱。

  2、 加热时--加热温度、加热致死时间、细胞浓度、细胞团块存在与否、介质性状和pH值等方面的因素对腐败菌耐热性的影响。

  (1) 加热条件:在一定热致死温度下,细菌(芽孢)随时间变化呈对数性规律死亡;温度愈高,杀灭它所需的时间愈短。

  (2) 细菌状态:在一定热致死温度下,菌数愈多,杀灭它所需时间愈长。细胞团块的存在降低热杀菌的效果

  (3) 介质性状:包括水分(水分活度)、pH值、碳水化合物、脂质、蛋白质、无机盐等,是影响杀菌效果的最重要的因素。

  腐败菌受热损伤后有如下表现:发育时的诱导期延长,营养需求增加;发育时最适pH范围缩小;增殖时最适温度范围缩小;对抑制剂的敏感性增强;细胞内的物质产生泄漏;对放射线的敏感性增加;细胞中酶的活力降低;核酸体的RNA分解等。

  判断腐败菌是否被杀灭,需测定其热死效果,常通过对经过热处理后的细菌芽孢进行再培养,以检查是否仍有存活。选择适当的培养基,如果腐败菌没有再生长,说明杀菌工艺适用。

  食品中各成分的热破坏反应一般均遵循一级反应动力学,也就是说各成分的热破坏反应速率与反应物的浓度呈正比关系。这一关系通常被称为热灭活或热破坏的对数规律(logarithmic order of inactivation or destruction)。这一关系意味着,在某一热处理温度(足以达到热灭活或热破坏的温度)下,单位时间内,食品成分被灭活或被破坏的比例是恒定的。

  即指数递减时间(Decimal reduction time),是热力致死速率曲线斜率的负倒数,可以认为是在某一温度下,每减少90%活菌(或芽孢)所需的时间,通常以分钟为单位。

  由于上述致死速率曲线是在一定的热处理(致死)温度下得出的,为了区分不同温度下微生物的D值,一般热处理的温度T作为下标,标注在D值上,即为DT。很显然,D值的大小可以反映微生物的耐热性。在同一温度下比较不同微生物的D值时,D值愈大,表示在该温度下杀死90%微生物所需的时间愈长,即该微生物愈耐热。

  必须指出,DT值是不受原始菌数影响的,但随热处理温度不同而变化,温度愈高,微生物的死亡速率愈大,DT值则愈小。

  即热力致死时间(Thermal death time)。在一定时间内(通常指1~10分钟)对细菌进行热处理时,从细菌死亡的最低热处理温度开始的各个加热期的温度称为热力致死温度。

  在某一恒定温度(热力致死温度)条件下,将食品中的一定浓度的某种微生物活菌(细菌和芽孢)全部杀死所需要的时间(min),一般用TDT值表示,同样在右下角标上杀菌温度。

  F值又称杀菌值,是指在一定的致死温度下将一定数量的某种微生物全部杀死所需的时间(min)。由于微生物的种类和温度均为特指,通常F值要采用上下标标注,以便于区分,即 。一般将标准杀菌条件下的记为F0在121.1℃热力致死温度下的腐败菌的热力致死时间,通常用F值表示。F值可用于比较相同Z值时腐败菌的耐热性,它与菌的热死试验时的原始菌数有关,随所指定的温度、菌种、菌株及所处环境不同而变化。

  当热力致死时间减少1/10或增加10倍时所需提高或降低的温度值,一般用Z值表示。Z值是衡量温度变化时微生物死灭速率变化的一个尺度。

  即热力指数递减时间。在某特定的热死温度下,将细菌或芽孢数减少到10-n时所需的热处理时间,。它是指在一定的致死温度下将微生物的活菌数减少到某一程度如10-n或1/10n(即原来活菌数的1/10n)所需的时间(min),记为TRTn,单位为分钟,n就是递减指数。

  很显然: 。可以看出,TRT值不受原始微生物活菌数影响,可以将它用作确定杀菌工艺条件的依据,这比用前述的受原始微生物活菌数影响的TDT值要更方便有利。TRTn值象D值一样将随温度而异,当n=1,TRT1=D。若以D的对数值为纵坐标,加热温度T为横坐标,根据D和T的关系可以得到一与拟热力致死时间曲线相同的曲线曲线、低温长时杀菌法

  低温长时杀菌法也称为巴氏杀菌。相对于商业杀菌而言,巴氏杀菌是一种较温和的热杀菌形式,巴氏杀菌的处理温度通常在100℃以下,典型的巴氏杀菌的条件是62.8℃/30min,达到同样的巴氏杀菌效果,可以有不同的温度、时间组合。巴氏杀菌可使食品中的酶失活,并破坏食品中热敏性的微生物和致病菌。巴氏杀菌的目的及其产品的贮藏期主要取决于杀菌条件、食品成分(如pH值)和包装情况。对低酸性食品(pH4.6),其主要目的是杀灭致病菌,而对于酸性食品,还包括杀灭腐败菌和钝化酶。

  高温短时杀菌法主要是指食品经100℃以上,130℃以下的杀菌处理。主要应用于pH4.5的低酸性食品的杀菌。

  ③可于密闭条件下进行操作,减少污染的机会。但杀菌后的细菌残存数会比低温长时杀菌法高;

  需要快速有效的热传导,通常采用刮板式或管式热交换器。这种方式适用于液体或小颗粒混合体。但如果是很粘稠的液体或颗粒直径大于3cm时,加热就会受到热传导的控制,此时产品就需要受热数分钟才能达到杀菌要求,这样产品的质量、营养成分和口感会受到影响。

  蒸汽喷射式加热灭菌是指采用蒸汽喷射的UHT灭菌法,通常叫做直接蒸汽喷射或DSI。

  蒸汽喷射式加热灭菌在最后的灭菌阶段将产品与蒸汽在一定的压力下混合,蒸汽释放出潜热将产品快速加热至灭菌温度。这种直接加热系统加热产品的速度比其它任何间接系统都要快。

  2、能加工粘度高的产品,尤其对那些不能通过板式热交换器进行良好加工的产品来说,它不容易形成结垢。但蒸汽压力将限制设备长时间运转。

  3、产品灭菌后需要进行无菌均质,由此设备本身的成本和运转成本大大增加。

  4、结构复杂,装置大多是非标准型,系统成本是同等处理能力的板式或管式加热系统的两倍。

  5、运转成本高,能量回收的限制性使加热成本增加。但从某种程度上说,该系统连续运转较长时间可适当弥补其高成本的缺陷。尤其对于牛乳来说,间接系统会产生严重的结垢现象,直接加热体系更符合产品的特性和质量要求。

  间歇式是指产品第一次灭菌采用管式超高温灭菌机,然后经灌装、封盖后放入间歇式灭菌器内进行第二次灭菌。

  连续式是指产品第一次灭菌采用管式或板式超高温灭菌机,第二次灭菌采用连续式灭菌机。该法灭菌处理的产品保存期长,有利于长途储运。

  3、 二次灭菌机是二次灭菌生产线的核心设备,要求其升温、降温快,传热均匀,尽量减小热冲击和热惯性,性能良好,严格执行灭菌规程。

  热处理过程要重视热能在食品中的传递特征与实际效果,满足食品卫生的要求,不应产生有害物质。应根据产品热处理的目的选择优化方法。

  商业杀菌 对对流传热和无菌包装的产品,在耐热性酶不成为影响工艺的主要因素时,尽量采用高温短时工艺。对传导传热的产品,一般难于采用高温短时工艺。

  在计算热处理的效果时必需知道两方面的信息,一是微生物等食品成分的耐热性参数,另一是食品在热处理中的温度变化过程。

  影响容器内食品传热的因素包括:表面传热系数;食品和容器的物理性质;加热介质(蒸汽)的温度和食品初始温度之间的温度差;容器的大小。

  ??要能准确地评价罐头食品在热处理中的受热程度,必须找出能代表罐头容器内食品温度变化的温度点,通常人们选罐内温度变化最慢的冷点(Cold point)温度,加热时该点的温度最低(此时又称最低加热温度点,Slowest heating point),冷却时该点的温度最高。热处理时,若处于冷点的食品达到热处理的要求,则罐内其它各处的食品也肯定达到或超过要求的热处理程度。

  ??由于传热的过程是从罐壁传向罐头的中心处,罐头的冷点在罐内的几何中心。

  ??由于罐内食品发生对流,热的食品上升,冷的食品下降,罐头的冷点将向下移,通常在罐内的中心轴上罐头几何中心之下的某一位置。

  测定热处理时传热的情况,应以冷点的温度变化为依据,通常测温仪是用铜?康铜为热电偶利用其两点上出现温度差时测定其电位差,再换算成温度的原理。

  在评价热处理的效果(如采用一般法计算杀菌强度F值)时,需要应用热穿透的有关数据,这时应首先画出罐头内部的传热曲线,求出其有关的特性值。

  传热曲线是将测得罐内冷点温度(Tp)随时间的变化画在半对数坐标上所得的曲线。作图时以冷点温度与杀菌锅内加热温度(Th)或冷却温度(Tc)之差(Th-Tp或Tp-Tc )的对数值为纵坐标,以时间为横坐标,得到相应的加热曲线或冷却曲线。为了避免在坐标轴上用温差表示,可将用于标出传热曲线度,纵坐标标出相应的冷点温度值(Tp )。

  ??以加热曲线为例,纵坐标的起点为Th-Tp =1(理论上认为在加热结束时,Tp 可能非常接近Th,但Th-Tp ≠0),相应的Tp 值为Th-1,即纵坐标上最高线标出的温度应比杀菌温度低一度(℃),第一个对数周期坐标的坐标值间隔为1℃,第二个对数周期坐标的坐标值间隔为10℃,这样依次标出其余的温度值。

  食品热杀菌的条件主要是杀菌值和杀菌时间,目前广泛应用的计算方法有三种:改良基本法、公式法和列线图解法。

  1920年比奇洛(Bigelow)首先创立了罐头杀菌理论,提出推算杀菌时间的基本法(The general mathod),又称基本推算法。该方法提出了部分杀菌率的概念,它通过计算包括升温和冷却阶段在内的整个热杀菌过程中的不同温度-时间组合时的致死率,累积求得整个热杀菌过程的致死效果。1923年鲍尔(Ball)根据加热杀菌过程中罐头中心所受的加热效果用积分计算杀菌效果的方法,形成了改良基本法(Improved general method)。该法提高了计算的准确性,成为一种广泛使用的方法。

  ??在杀菌过程中,食品的温度会随着杀菌时间的变化而不断发生变化,当温度超过微生物的致死温度时,微生物就会出现死亡。温度不同,微生物死亡的速率不同。在致死温度停留一段时间就有一定的杀菌效果。可以把整个杀菌过程看成是在不同杀菌温度下停留一段时间所取得的杀菌效果的总和。

  此法是由鲍尔提出,后经美国制罐公司热工学研究组简化,用来计算简单型和转折型传热曲线上杀菌时间和F值。简化虽然会引入一些误差但影响不大。此法已经列入美国FDA的有关规定中,在美国得到普遍应用。

  公式法是根据罐头在杀菌过程中罐内容物温度的变化在半对数坐标纸上所绘出的加热曲线,以及杀菌结束冷却水立即进入杀菌锅进行冷却的曲线才能进行推算并找出答案。它的优点是可以在杀菌温度变更时算出杀菌时间,其缺点是计算繁琐、费时,还容易在计算中发生错误,又要求加热曲线必须呈有规则的简单型加热曲线或转折型加热曲线,才能求得较正确的结果。

  近几十年来许多学者对这种方法进行了研究,以达到既正确又简单,且应用方便的目的。随着计算机技术的应用,公式法和改良适用法一样准确,但更为快速、简洁。

  列线图法是将有关参数制成列线计算图,利用该图计算出杀菌值和杀菌时间。该法适用于Z=10℃,m+g=76.66℃的任何简单型加热曲线,快捷方便,但不能用于转折型加热曲线的计算。当有关数据越出线外时,也不能用此法计算。

  确定食品热杀菌条件时,应考虑影响热杀菌的各种因素。食品的热杀菌以杀菌和抑酶为主要目的,应基于微生物和酶的耐热性,并根据实际热处理时的传热情况,选择食品热杀菌条件,以确定达到杀菌和抑酶的最小热处理程度。热杀菌技术的研究动向集中在热杀菌条件的最优化、新型热杀菌方法和设备开发方面。热杀菌条件的最优化就是协调热杀菌的温度时间条件,使热杀菌达到期望的目标,而尽量减少不需要的作用。

  热杀菌的方法和工艺与杀菌的设备密切相关,良好的杀菌设备是保证杀菌操作完善的必要条件。目前使用的杀菌设备种类较多,不同的杀菌设备所使用的加热介质和加热的方式、可达到的工艺条件以及自动化的程度不尽相同。杀菌设备除了具有加热、冷却装置外,一般还具有进出料(罐)传动装置、安全装置和自动控制装置等。

  以满足理论计算的杀菌值(F0)为目标,热杀菌可以有各种不同杀菌温度-时间的组合。

  实罐试验的目的就是根据罐头食品质量,生产能力等综合因素选定杀菌条件,使热杀菌既能达到杀菌安全的要求,又能维持其高质量,在经济上也最合理。

  ??将常见导致罐头腐败的细菌或芽孢定量接种在罐头内,在所选定的杀菌温度中进行不同时间的杀菌,再保温检查其腐败率。

  ??通常采用将耐热性强的腐败菌接种于数量较少的罐头内进行杀菌试验,藉以确证杀菌条件的安全程度。如实罐接种杀菌试验结果与理论计算结果很接近,这对所订杀菌条件的合理性和安全性有了更可靠的保证和高度的信心。

  (1) 低酸性食品:梭状产芽孢杆菌(Clostridium sporogenses)PA3679芽孢

  (2) pH3.7以下酸性食品:巴氏固氮梭状芽孢杆菌(Clostridium pasteurianum)

  根据杀菌条件的理论计算,按杀菌时间的长短至少分为5组,其中1组为杀菌时间最短,试样腐败率达到100%;1组为杀菌时间最长,预计可达0%的腐败率;其余3组的杀菌时间将出现不同的腐败率,通常杀菌时间在30~100之间,每隔5分钟为1组,比较理想的是根据F值随温度提高时按对数规律递减情况,F值可按0.5、1.0、2.0、4.0、6.0,确定不同加热时间加以分组。每次试验要控制为5组,否则罐数太多,封罐前后停留时间过长,将影响试验结果。因此试验要求在一天内完成,并用同一材料。

  ??对照组的罐头也应有3~5组,以便核对自然污染微生物的耐热性,同时用来检查核对二重卷边是否良好,罐内净重、沥干重和顶隙度等。还将用6~12罐供测定冷点温度之用。

  ??接种实罐试验后的试样要在恒温下进行保温试验。培养温度依据试验菌的不同而不同:

  保温试验样品应每天观察其容器外观有无变化,当罐头胀罐后即取出,并存放在冰箱中。

  保温试验完成后,将罐头在室温下放置冷却过夜,然后观察其容器外观、罐底盖是否膨胀,是否低真空,然后对全部试验罐进行开罐检验,观察其形态、色泽、pH值和粘稠性等,并一一记录其结果。接种肉毒杆菌试样要做毒性试验,也可能有的罐头产毒而不产气。

  当发现容器外观和内容物性状与原接种试验菌所应出现的征状有差异时,可能是漏罐污染或自然界污染了耐热性更强的微生物造成,这就要进行腐败原因菌的分离试验。

  ??接种实罐试验和保温试验结果都正常的罐头加热杀菌条件,就可以进入生产线的实罐试验作最后验证。试样量至少100罐以上,试验时必须对以下内容进行测定并做好记录:

  M. 加热杀菌前食品每克(或每毫升)含微生物的平均数及其波动值,取样次数为5~10次。pH3.7以下的高酸性食品检验乳酸菌和酵母; pH3.7~5.0的酸性食品检验嗜温性需氧菌芽孢数(如果可能的话,嗜温性厌氧菌芽孢数也要检验);pH5.0以上的低酸性食品检验嗜温性需氧菌芽孢数、嗜热性需氧菌芽孢数(如果可能的话,嗜温性厌氧菌芽孢数也要检验),这对于保证杀菌条件的最低极限十分必要。

  ??生产线实罐试样也要经历保温试验,希望保温3~6个月,当保温试样开罐后检验结果显示内容物全部正常,即可将此杀菌条件作为生产上使用,如果发现试样中有腐败菌,则要进行原因菌的分离试验。

  微波采用灼烧或干热空气灭菌,称为干热灭菌。虽然干燥主热空气的穿透力不如湿热蒸汽强,但它使用方便,适用于玻璃器皿和瓷器等物的灭菌,故广泛应用于实验室和生产实践。

  干热是指相对湿度在20%以下的高热。干热消毒灭菌是由空气导热,传热效果较慢。一般繁殖体在干热80-100℃中经1小时可以杀死,芽胞需160-170℃经2小时方可杀死。

  干热灭菌是利用高温杀死微生物的方法之一。通常采用很高的温度,例如火焰直接加热,或选择160~180℃的热风处理。

  微生物组成的最重要成份是蛋白质、核酸等,当遇到高温时会引起蛋白质和核酸不可逆的变性或凝固,使细胞失去了生理机能,停止生长发育,直至死灭。此外高温还可破坏细胞的其他组成,或者使细胞的脂肪膜受热溶解而形成了极大的孔,导致细胞内含物泄漏而引起死亡,从而达到高温灭菌的效果。

  耐热的接种环、接种铲、接种匙、接种针等,通过火焰灼烧,可彻底灭菌,试管口和玻璃瓶口,通过几次火焰,温度可达200℃以上,一切微生物和芽孢,可全部杀死,达到无菌程度。

  罐头工业中的火焰杀菌是利用火焰直接加热罐头,是一种常压下的高温短时杀菌。

  杀菌时罐头经预热后在高温火焰(温度达1300℃以上)上滚过,短时间内达到高温,维持一段较短时间后,经水喷淋冷却。

  由于灭菌时罐内压较高,一般只用于小型金属罐。此法的杀菌温度较难控制(一般以加入后测定罐头辐射出的热量确定。)

  1、 该灭菌法适用于玻璃器皿、瓷器、不锈钢器皿以及明胶海棉、液体石蜡、各种粉剂、软膏等,不适用于液体材料灭菌。

  2、 由于干热空气穿透力差,加之微生物蛋白质在干燥条件下,不易凝固变质,故干热灭菌温度,一般要求掌握在160℃,维持2小时。

  3、 干热烤箱是干热灭菌的常用仪器,它是通过电热丝进行加温和调温的。通电加热后的空气在一定空间不断对流,产生均一效应的热空气直接穿透物体。一般繁殖体在干热80-100℃中经1小时可以杀死,芽胞、病毒需160-170℃经2小时方可杀死。

  1、 干热灭菌温度超过170℃,包装灭菌用品的纸张或棉花、布类,会被热空气烤焦,甚至有着火燃烧的危险。

  2、 操作干热灭菌箱,灭菌后待箱内温度降至50-40℃以下才能开启柜门,以防炸裂。

  干热灭菌的主要设备有干热灭菌柜、隧道灭菌系统。干热灭菌设备一般由下列几个重要部分组成:

  缓冲板或空气档板用于控制干热灭菌器的空气流量;气流调节器用于灭菌器腔室内的正压控制。

  传送带的速度,在连续传送干热灭菌系统中是十分重要的,其传送速度决定了物料经过灭菌器时所接受的热量以及相应的灭菌效果。 6、运行连锁控制系统

  可用于能耐受较高温度,却不宜被蒸汽穿透,或者易被湿热破坏的物品的灭菌。

  类似于湿热灭菌系统验证中使用的F0值,是将时间与湿度条件的改变折算成170℃时的相当时间,同时设定Z值为20℃即FH值。BP1993年版规定,仅以灭菌为最终目的干热灭菌系统,必须保证其最小的FH值大于170℃60min。

  对于采用干热存活概率法灭菌的系统,验证结果应能证明其灭菌过程保证对耐热微生物的杀灭效果达到认可的低存活概率,一般未被杀灭的概率为10-6。

  对于采用干热过度杀灭法灭菌系统的验证结果,应证明其灭菌过程保证对干热呈高度耐受性的微生物产生大于12个log的递减,取得低于10-12的微生物存活概率。

  加热器故障是造成干热灭菌设备灭菌效果下降的主要原因之一,其主要表现为升温速度下降;影响热分布;产生尘埃物质。而造成加热器故障的原因,主要是加热器的长期使用或通过加热器的空气质量较差所致。所以一般应在灭菌器的加热系统配置电流监测器,以及时发现其故障。

  用于正压控制,可以安装在排风系统中的防止倒流风污染的高效过滤器附近,通过控制排风量控制正压,也可以用气流调节器控制进风和排风风量以保持正压。

  一般情况下,干热灭菌器腔室内的压力略高于其相临的非无菌区而略低于其相临的无菌区。

  风机的风量应该可以测量,并可调整,必要时可以要求供应商将此项要求增加到其设备标准中,因为风机风量的测量指示值,可以为设备使用过程中检查风机状态提供依据。

  生产工艺中有必要保存每次灭菌过程的传送速度的记录。同时干热灭菌器的SOP,也应明确规定各种灭菌过程传送带的运行速度范围,此运行速度范围应是经过验证确定的。

  干热灭菌器中连锁控制系统设有:门连锁控制系统;压力传感器;温度传感、控制、停止传送带运行的连锁控制装置等,以保证在任何情况下出现温度低于设计要求时防止灭菌物品在低于灭菌温度的情况下通过灭菌器。

  在干热灭菌系统中,温度探测、传感、控制、记录系统是整个灭菌过程控制的基础,其控制系统必须能保证灭菌器腔室内灭菌温度可以保持在设定的灭菌温度范围内,其记录系统必须将温度探测、传感系统的温度读数准确无误地记录清楚。

  微波(microwave)是指波长约1m~10mm的电磁波,常分为米波、厘米波、毫米波和亚毫米波四个波段。

  微波的频率(300MHz~300GHz),介于无线电频率(超短波)和远红外线频率(低频端)之间。由于其频率很高,在某些场合也叫超高频电磁波。

  目前工业上只有915MHz (美国用896MHz)和2450MHz两个频率被广泛应用。

  微波加热用于工业开始于二十世纪七十年代末。由于能源成本的提高,促使人们寻找更有效的工业加热和干燥的方法。微波作为热源,具有加热速度快,能量利用率高的特点,因此微波加热技术和微波炉应用获得迅速发展。

  食品微波处理主要是利用微波的热效应。食品中的水分、蛋白质、脂肪、碳水化合物等都属于电介质。电介质吸收微波能使介质温度升高,这个过程称介电加热。

  溶液中的离子在电场作用下产生离子极化。离子带有电荷从电场获得动能,相互发生碰撞作用,可以将动能转化为热。

  有些电介质,分子的正负电荷重心不重合,即分子具有偶极距,这种分子称偶极分子(极性分子)。当极性分子受外电场作用时,偶极分子就会产生转距。在高频电场中一秒钟内极性分子要进行上亿次的换向变极运动,使分子之间产生强烈振动,引起摩擦发热,使物料温度升高,达到加热目的。

  电热杀菌亦称欧姆杀菌,它利用电极将电流通过物体,由于阻抗损失、介质损耗等的存在,最终使电能转化为热能,使食品内部产生热量而达到杀菌的目的。

  使用交流电的频率为50~60Hz,它利用电极将电流直接导入食品,由食品自身的介电性质产生热量,以达到杀菌的目的。

  2、大多数能用泵输送的、溶解有盐类离子且含水量在30%以上的食品都可用电阻加热来杀菌

  采用热交换器进行间接热交换,其过程速率取决于传导、对流或辐射的换热条件。

  间壁式换热情形,热量首先由加热介质(如水蒸汽)通过间壁传递给食品物料中的液体,然后靠液体与固体颗粒之间的对流和传导传给固体颗粒,最后是固体颗粒内部的传导传热,使全部物料达到所要求的杀菌温度。

  要使固体颗粒内部达到杀菌温度,其周围液体部分必须过热,这势必导致含颗粒食品杀菌后质地软烂、外形改变,影响产品品质。

  将流体与颗粒同时施以电流,若两者的导电特性相似,则两者同时快速生热且加热程度相当均匀。

  目的产品在加热时没有经历大的温度梯度且液体与颗粒同时被加热,因此加工时间短,产品品质高,能使产品在高温处理后仍保持完好的颗粒形状。

  加热表面不燃烧,加热期间产品不许搅动,液体载体不需过分加热以加热颗粒和颗粒受热均匀。

  电热灭菌可将液状食品中的大肠杆菌、酵母菌、芽孢杆菌杀灭,其杀菌机理主要是:

  1、 利用电流通过食品时,食品中的极性分子在电极极性的高频变化下,不断地旋转摩擦而产生热量,达到杀死活菌体的作用;

  2、 在通电的两电极间的菌体细胞,由于受到所加电场的作用导致菌体细胞膜的破坏而灭菌。

  5、应该保持严格控制的方面:产品配方、流速、在加热器中的产品温度,以及其它关键控制点

上一篇:您身边的灭菌专家

下一篇:巴氏灭菌法

顶部